

Process Intensification and Green Chemistry – Notation and Symbology

Chapter 3 (process intensification)

Roman symbol	Definition	Units	Comments
a	surface area per unit volume	m^2/m^3	
A	area	m^2	
A	amplitude	m	
A/V	surface area of heat transfer to reaction volume	$1/\text{m}$	
ATU	area of a transfer unit	m^2	ATU takes the form of A_G , A_L , A_{OG} , or A_{OL} depending on which film is controlling
B^o	nuclei formed per unit volume per unit time	$1/\text{m}^3/\text{s}$	
Bo	Bodenstein number	-	
c	molar concentration of solute in solution	mol/m^3	
c^*	molar equilibrium concentration (solubility)	mol/m^3	
C_D	discharge coefficient of baffle	-	
C_W	flow rate coefficient	-	
d	diameter of disk	m	
d	inner tube diameter	m	
d_e	effective diameter of multi-orifice COBRs	m	if number of orifices $n_o = 1$, $d_e = d$
d_o	orifice diameter	m	
D or D_m	diffusion coefficient	m^2/s	
E_{ML}	Murphree efficiency based on liquid phase	-	
E_{MV}	Murphree efficiency based on vapor phase	-	
f	frequency	Hz	
F	F -factor	$\text{Pa}^{0.5}$	
F_V or F	feed flow rate	m^3/s	
G	molar flow rate of gaseous/vapor phase	mol/s	
G	crystal growth rate	m/s	
G	Gap ratio (RS-SDR)	-	
h	convective heat transfer coefficient	$\text{W}/\text{m}^2/\text{K}$	
$HETP$	height equivalent of a theoretical plate	m	
k	mass transfer coefficient	m/s	

k	thermal conductivity	W/m/K	
k_G	crystal growth rate constant	various units	function of temperature, agitation speed, impurities and system
k_L	mass transfer coefficient	m/s	
$k_L a$	volumetric mass transfer coefficient	1/s	
k_N	nucleation rate constant	various units	function of temperature
l	characteristic crystal length	m	
l_e	mixing length for eddy enhancement model	m	
L	molar flow rate of liquid phase	mol/s	
L	Baffle spacing (COBR)	m	
L/d	length to internal tube diameter ratio	-	
M_T	slurry density	various units	
n_o	number of orifices	-	
N	agitation speed	rpm	
N_b	number of baffles per unit length		
N_{CSTR}	number of CSTRs in series for the tank-in-series model		parameter used to characterize the non-ideality of real reactors
Nu	Nusselt number		
NTP	number of equilibrium plates		
NTS	number of equilibrium stages		
NTU	number of transfer units		NTU takes the form of N_G , N_L , N_{OG} , or N_{OL} depending on which film is controlling
p	pressure	Pa	
P	power	W	
Pr	Prandtl number		
Pe_{ax}	axial Peclet number		
Q	volumetric flow rate	m^3/s	
\dot{Q}	heat flow	W	
r	radial distance	m	
R	disk radius (TF-SDR)	m	
r_d	disk radius (RS-SDR)	m	
r_i	inner radius	m	
r_o	outer radius	m	
Re	Reynolds number		
Re_n	net flow Reynolds number		equivalent to Re
Re_o	oscillatory Reynolds number		
s	gap between rotor and stator (RS-SDR)	m	

ν	kinematic viscosity	m^2/s
$\nu_{i,j}$	stoichiometric coefficient of species i in reaction j	
ρ_G	density of the gas phase	kg/m^3
$\bar{\rho}_m$	mean density	kg/m^3
σ^2	variance	
$\sigma^2(\dot{\gamma})$	variance in the shear rate	$1/\text{s}^2$
$\sigma^2(\varepsilon)$	variance in the specific power dissipation	W^2/m^6
τ	mean residence time	s
τ_c	contact time (penetration theory)	s
τ_{mx}	(micro)mixing time	s
τ_{rx}	reaction time	s
ϕ	Thiele modulus	
Ψ	velocity ratio	
ω	angular velocity	rad/s
Ω	overall effectiveness factor	

Abbreviation	Definition
CAPEX	capital expenditure
CFD	computational fluid dynamics
COBC	continuous oscillatory baffled crystallizer
COBR	continuous oscillatory baffled reactor
CSD	crystal size distribution
CSTR	continuous stirred tank reactor
HETP	height equivalent to a theoretical plate
HEX	heat exchanger reactor
HGAP	high-gravity anti-solvent precipitation
HTF	heat transfer fluid
MSMPR	mixed suspension mixed product removal
MSZW	metastable zone width
OPEX	operating expenditure
PI	process intensification
RPB	rotating packed bed
RSR or RS-SDR	rotor-stator spinning disk reactor
RTD	residence time distribution
RZB	rotating zigzag bed
SDR	spinning disk reactor
SS	stainless steel

TF-SDR thin-film spinning disk reactor

TSCC-RPB two-stage counter-current
rotating packed bed
